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Abstract

The e�ect of far-�eld boundary conditions on the evolution of a �nite-

amplitude two-dimensional wave in the Blasius boundary layer is assessed.

With the use of the parabolized stability equations (PSE) theory for the

numerical computations, either asymptotic, Dirichlet, Neumann or mixed

boundary conditions are imposed at various distances from the wall. The re-

sults indicate that asymptotic and mixed boundary conditions yield the most

accurate mean-ow distortion and unsteady instability modes in comparison

with the results obtained with either Dirichlet or Neumann conditions.
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1. INTRODUCTION

In a direct numerical simulation (DNS) of spatially growing disturbances

in boundary-layer ows, the in�nite domain in the streamwise direction x

must be truncated to a �nite length, while the semi-in�nite extent in the

plate-normal direction y may or may not be truncated. In past simulations,

either a truncated domain in y [1-3] has been used or the semi-in�nite domain

has been mapped to a �nite one with a change of variables [4-7].

The physical problem unequivocally prescribes the boundary conditions

at y !1. Asymptotic boundary conditions can be implemented when the

domain is truncated at a location y where the mean-ow has reached a con-

stant value. At higher y locations the asymptotic boundary conditions can

be approximated rather well by mixed boundary conditions (i.e. involving

the function and its derivative and sometimes called Robin conditions). Sim-

pler conditions such as homogeneous Neumann, or Dirichlet conditions can

also be used; however, strictly speaking, these conditions are incorrect. The

question is whether the loss of accuracy due to these more easily implemented

but approximate boundary conditions is acceptable.

Here, we look at the e�ect of the far-�eld boundary conditions on the

evolution of a �nite-amplitude two-dimensional wave in the Blasius bound-

ary layer. We select either asymptotic, mixed, homogeneous Dirichlet, or

homogeneous Neumann conditions and impose these conditions at various

distances ymax from the wall. For this study, we employ the parabolized

stability equations (PSE) to take advantage of the low computational cost

(e.g., typically 15 min on a workstation for a fully nonlinear two-dimensional

calculation).
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The frequency, the streamwise starting location x0, and the initial ampli-

tude of the Tollmien-Schlichting (TS) wave used here were previously used

by Bertolotti, Herbert, and Spalart [8] in a comparison of PSE and DNS

results. The DNS code of Spalart mapped the in�nite domain in y to a �-

nite domain via a mapping, which enforced the correct boundary condition

at in�nity and avoided the approximations caused by a truncated domain.

Comparisons of results between PSE and DNS showed excellent agreement

for all modes, including the mean-ow distortion [9].

In the comparison between DNS and PSE results by Joslin, Streett, and

Chang [10], a discrepancy was found in the mean-ow distortion component.

This discrepancy was attributed to the di�erent far-�eld boundary condi-

tions imposed in the two codes; the DNS code used homogeneous Dirichlet

conditions, and the PSE code used homogeneous Dirichlet conditions for

all unsteady modes and a homogeneous Neumann condition for the steady

mean-ow distortion term. This discrepancy motivated the current study.

2. GOVERNING EQUATIONS

The reference length is �(x0) =
p
�x0=U1, which is de�ned at the

streamwise location x0. The corresponding Reynolds number at x0 is R0 =

U1�(x0)=� = 400. The nondimensional frequency of the two-dimensional

TS wave is F = 2� 106�f�=U2
1

= 86, which yields ! = 0:0344.

The PSE equations used in this work are described in references 8 and

9. The incompressible disturbance equations are reduced to two variables

(the u and v components of velocity) by taking the curl of the Navier-

Stokes equations, eliminating the w velocity component with the conti-
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nuity equation, and reducing the three governing equations to two equa-

tions. The disturbance �eld is expanded in a six-term Fourier series in time,

0; !t; 2!t; :::; k!t; :::; 5!t, which leads to complex Fourier coe�cients ûk and

v̂k for the velocity components. These equations take the form,

[L+
dak
dx

N]qk +M
dqk
dx

= Rk k = 0; 1; 2; :::; 5 (1)

where qk = fûk; v̂kg is the vector of pro�le functions, ak is the complex

wavenumber for mode k composed of a real part k describing the growth

rate and an imaginary part k� describing the wavenumber, the operators

L;M;N depend on ak and frequency k!, and contain derivatives only in y.

The operator L contains the Orr-Sommerfeld and Squire operators, which

are well known in the parallel-ow stability theory. The right-hand-side term

Rk is the convolution term stemming from the nonlinear products.

Introducing the �nite di�erence form dqk=dx ! (qk � qold
k
)=dx and

dak=dx! (ak � aold
k

)=dx into equation (1) yields

[L+
ak � aold

k

dx
N+

1

dx
M]qk = Rk +

1

dx
Mqoldk : k = 0; 1; 2; :::; 5 (2)

These coupled set of equations can be solved by marching in x.

The physical boundary conditions at y !1 impose vanishing ûk and v̂k

velocities for the unsteady modes (k > 0) and vanishing û0 and constant v̂0

velocities for the steady mode (k = 0). A �nite v̂0 allows for changes in the

displacement thickness as the ow transitions to turbulence. This condition

becomes v̂0 = 0 in ows over bodies with a bounded streamwise extent.

Outside the boundary layer, the operators L;M;N have constant co-

e�cients, and the solution decays exponentially. When the computational
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domain is truncated in this region, boundary conditions can be imposed that

yield the exact solution at all interior points. These boundary conditions

have been presented by Keller [11] for the Orr-Sommerfeld operator, and are

extended here to the PSE equation. The basic idea is to require that the so-

lution has a null projection onto the subspace spanned by the exponentially

growing eigensolutions of the operator on the left-hand side of equation (2).

These eigensolutions are evaluated when equation (2) is re-written as a �rst

order system. In the present formulation the highest derivative in y of û is

2, and of v̂ is 4, hence we introduce the vector xk = fûk; û0k; v̂k; v̂0k; v̂00k ; v̂000k g
were the prime denotes di�erentiation w.r.t. y, and re-write (2) as

Axk +B
dxk
dy

= rk(y) (3)

where the matrices A and B depend on k and contain, in addition to the

information in equation (2), the relations d(ûk)=dy = û0
k
, d(v̂k)=dy = v̂0

k
,

d(v̂0
k
)=dy = v̂00

k
, and d(v̂00

k
)=dy = v̂000

k
. We then compute, for each mode k,

the eigensolutions f�i; eig that solve [AT � �iB
T ] ei = 0, where T denotes

transpose, and relabel these eigensolutions so that �1; �2 and �3 have a

negative real part. The requirement of zero projection onto the growing

eigenmodes yields the following asymptotic boundary conditions,

xk �BTei = ck � ei i = 1; 2; 3 (4)

where

ck = f b1
(c1 + �i)

;
b2

(c2 + �i)
; :::g (5)

is obtained by approximating each component of the forcing rk in the neigh-

borhood of the boundary by a function of the form b ecy , and the dot product

in equation (4) is de�ned as a � b =
P

aibi.
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The spatial DNS code solves the disturbance form of the full Navier-

Stokes equations with high-order �nite- and compact-di�erence methods and

spectral methods. Homogeneous Dirichlet conditions are imposed in the far-

�eld and at the wall, inow conditions consist of the Blasius and eigenfunc-

tions provided by linear stability theory, and the bu�er domain technique

[12] is used for the streamwise outow condition. Refer to references 13 for a

discussion of accuracy issues with grid re�nement and outow bu�er domain

treatment.

3. RESULTS

Results were obtained for cases with the upper boundary placed at

ymax = 15, 20, 30, 45, 60, 90, and 130. For each of these cases, com-

putations were made that employed the following conditions for modes

k = 0; 1; 2; 3; 4; 5:

Dirichlet conditions:

ûk = 0; v̂k = 0;
@v̂k
@y

= 0 (6)

Neumann conditions:

@ûk
@y

= 0;
@v̂k
@y

= 0;
@2v̂k
@y2

= 0 (7)

Mixed conditions:

@ûk
@y

+ akûk = 0;
@v̂k
@y

+ akv̂k = 0;
@2v̂k
@y2

+ ak
@v̂k
@y

= 0 (8)

Asymptotic conditions:

xk �BTei = ck � ei i = 1; 2; 3 (9)
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The conditions for the highest derivative of v̂ with respect to y are

derived from the continuity equation. The mixed boundary conditions and

the asymptotic boundary conditions are altered for the mean-ow distortion

term (i.e. k = 0), to the form discussed above, namely,

û0 = 0;
@v̂0
@y

= 0;
@2v̂0
@y2

= 0 (10)

The initial condition was composed of the single Fourier mode k = 1,

with an amplitude of 0:25 percent rms. based on the maximum of the u

component of velocity.

High resolution in the plate-normal direction y was obtained with �ve

subdomains. In each subdomain, the ûk and v̂k velocity components were

expanded with 18 Chebyshev polynomials. The step size in x was set to

�x = 10.

Figure 1 shows the evolution of the disturbance amplitude based on the

u component of velocity for the Fourier modes F = 1, F = 2, and the steady

component F = 0 with a Reynolds number of R = U1�(x)=� =
p
xR0 for

results calculated by both the PSE and DNS codes. Both codes enforced

the Dirichlet boundary conditions (eqs. 1) at ymax = 130. The results agree

well, which reasonably indicates the equivalence of the two procedures for

the at-plate problem.

Next, computations were conducted with PSE theory to compare the

maximum amplitudes of F = 0 and F = 1 modes as function of far-�eld

boundary locations. At the downstream location that corresponds to R =

940, Figure 2 displays the dependence of the maximum amplitudes, based on

the u component of velocity, with the truncated far-�eld boundary location

6



ymax for the F = 1 and F = 0 modes. The solid line represents results that

were obtained with asymptotic boundary conditions (eqs. (9)), the dashed

line represents the mixed conditions (eqs. (8)), the square symbols represent

Dirichlet conditions (eqs. (6)), the triangular symbols represent Neumann

conditions (eqs. (7)), and the arrows denote the results obtained by applying

the physical boundary conditions at in�nity (using an algebraic mapping).

Note that the boundary-layer edge (99% de�nition) grows from y = 5 at

R = 400 to y = 12 at R = 940; therefore, the far-�eld boundary must be

beyond y = 12.

The results obtained with the asymptotic boundary conditions are in-

dependent of ymax once the mean-ow has reached a constant value (e.g.

with less than a 0.01% variation). To increase accuracy, the operators in

equation (3) can be evaluated with the mean-ow value at in�nity, rather

than at ymax, however, for ymax < 20 the mean-ow is still varying when the

boundary is reached, and, consequently, the asymptotic boundary conditions

become only approximate. The dip in the solid curve in �gure 2 displays this

fact. The evaluation of ck in equation (4) can also a�ect accuracy; when the

exponential �t (which is exact in the linear case) of rk is replaced by a two

term Taylor series approximation of rk at ymax, the calculated growth rates

fall 15% short of the exact value, even for ymax � 20.

The mixed boundary conditions impose the exponential decay exp(�ay)
to the solution. The complex wavenumber a is an eigenvalue of AT � �iB

T ,

and when the other two decaying eigensolutions have a decay rate much

higher than a, the mixed boundary conditions become equivalent to the

asymptotic boundary conditions, provided ymax is su�ciently large. A dif-
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ference between the dashed and solid curves in �gure 2 is barely visible at

ymax < 35, although such a close agreement should not always be expected.

However, for ymax > 35, the mixed and asymptotic boundary conditions lead

to the same solutions. Because the mixed conditions are homogeneous and

have a simpler form, they are easier to implement.

The Neumann conditions yield accurate results for ymax > 45. These

conditions allow for a change in the boundary-layer displacement thickness

(i.e., nonzero v velocity for F = 0 at ymax). Similarly, Dirichlet bound-

ary conditions lead to accurate results for the traveling mode F = 1 when

ymax > 45. However, the steady component F = 0 is adversely a�ected

by the Dirichlet boundary conditions even for large values of ymax, as indi-

cated by the square symbols in Figure 2a. Furthermore, the v component

of velocity vanishes, which prevents changes from the laminar value of the

boundary-layer displacement thickness. Figure 3 displays the û0 and v̂0 ve-

locity components for the mean-ow distortion mode (F = 0) at R = 940.

Outside the boundary layer, the v̂0 velocity decreases linearly to match the

zero boundary value at ymax = 130. Because the boundary-layer displace-

ment thickness tends to increase beyond the laminar value, mass conservation

forces a nonzero û0 component of velocity outside the boundary layer, which,

in turn, creates an arti�cial boundary layer at ymax. (Note that the small

errors between the DNS and PSE vo pro�les are of the order 10�6, which

can be attributed to numerical errors in the DNS approach.)

All PSE calculations up to this point have been done using of 90 Cheby-

shev polynomials in y per variable, per mode. This high resolution was

chosen in order to remove resolution issues from the analysis. To assest the
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e�ect of the far-�eld resolution, we have repeated the computation using two

domains, the inner one going from the wall to y = 5 and the outer one from

y = 5 to y = 30. A linear mapping from physical to [�1; 1] was used in both

domains. The resolution in the lower domain was �xed at 18 polynomials per

variable, and in the outer domain either 10 or 30 polynomials were employed.

Table 1 below displays the maximum u amplitude for the F = 0 and F = 1

modes at R = 940 obtained with di�erent boundary conditions. The exact

values are 0.595 % for F = 0 and 2.843 % for F = 1. (The column labeled

"High Res" displays the values shown in �gure 2.)

Table 1. Modal maximums at R = 940

F=0 F=1
BC Type 10 30 High Res 10 30 High Res
Asymptotic 0.605 0.595 0.596 2.966 2.840 2.844
Mixed 0.597 0.597 0.598 2.869 2.853 2.858

Neumann 0.666 0.684 0.684 3.709 3.807 3.812
Dirichlet 0.152 0.286 0.298 2.010 1.855 1.895

The asymptotic, mixed, and Neumann conditions display only a small

variation with change in resolution. The Dirichlet condition is more sensitive,

due to the need to resolve the arti�cial boundary-later at the upper domain,

shown in �gure 3. The largest di�erence between results, thus, comes from

the boundary condition implemented, rather than the resolution.

4. CONCLUSIONS

The use of a �nite domain in y plus Dirichlet and Neumann boundary

conditions eliminates some coding di�culties in direct Navier-Stokes simula-

tion codes, but introduces errors. As in the case considered here, the errors

are small when the truncation location ymax is located well into the region
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of exponential decay of the disturbances. An exception is the steady com-

ponent F = 0, which does not decay in the free stream and for which the

error introduced by the use of Dirichlet conditions does not vanish as ymax

is increased. A similar error also is expected for three-dimensional steady

disturbances because they decay slowly (i.e., as in exp(��2y)) in the free

stream. The errors introduced in the calculation of traveling modes by ei-

ther Dirichlet or Neumann conditions, on the other hand, are negligible if

a truncation location ymax is chosen su�ciently far from the plate. In con-

trast, asymptotic boundary conditions and mixed boundary conditions yield

accurate results when imposed beyond the 99.99% de�nition of the boundary

layer edge. The asymptotic conditions are exact, but require a signi�cantly

greater amount of coding to implement.
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FIG. 1. Amplitudes of F = 0, F = 1, and F = 2 modes from PSE (solid

line) and DNS (symbols) with Dirichlet boundary conditions.

FIG. 2. Maximum amplitudes of F = 0 and F = 1 modes as function of ym

for the case of asymptotic (solid line), mixed (dashed line), Neumann (trian-

gles), and Dirichlet boundary conditions (squares), and physical boundary

conditions at ymax !1 (arrow) at R = 940.

FIG. 3. Velocity components u and v for the F = 0 mode of PSE theory

with asymptotic (line) and Dirichlet (dashed) boundary conditions and DNS

results (symbols) at R = 940.
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FIG. 1. Amplitudes of F = 0, F = 1, and F = 2 modes from PSE (solid

line) and DNS (symbols) with Dirichlet boundary conditions.
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FIG. 2. Maximum amplitudes of F = 0 and F = 1 modes as function of ym

for the case of asymptotic (solid line), mixed (dashed line), Neumann (trian-

gles), and Dirichlet boundary conditions (squares), and physical boundary

conditions at ymax !1 (arrow) at R = 940.
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FIG. 3. Velocity components u and v for the F = 0 mode of PSE theory

with asymptotic (line) and Dirichlet (dashed) boundary conditions and DNS

results (symbols) at R = 940.
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